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The field equations of linear irreversible thermodynamics have been deduced from Hamilton’s principle. The
Hamiltonian formalism has been considered as a theory of conservative systems without dissipative processes.
In this paper, we present the field equations of linear irreversible thermodynamics that are deduced from a
Hamiltonian principle. First, we present the canonical mathematical model for purely dissipative transport
processes. Then introducing a Lie algebra of the potentials with the help of an algebraic-type transformation,
we examine the physical processes in this algebra. We expect that two kinds of descriptions of the same
physical situation develop into two such descriptions in time, which describe the same physical situations as
well. Since the given transformation is a dynamical transformation~it leaves the Lagrangian invariant! in the
sense of the above-mentioned expectation, we expect that the entropy density function and the entropy pro-
duction density function~which pertains to the same physical situation! have to be invariant under that
transformation which leaves the Lagrangian invariant. It is shown that these are satisfied if the phenomeno-
logical coefficient matrices are symmetric.@S1063-651X~97!08305-0#

PACS number~s!: 44.60.1k
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I. INTRODUCTION

In the field theory of irreversible thermodynamics@1–15#
we regard the local specific entropys as a fundamental stat
variable. In the case of local equilibrium systems it is t
function of specific extensive quantities, which are contin
ously differentiable functions of space and time,

s5s„g1~r ,t !, . . . ,gf~r ,t !…5s~r ,t !. ~1!

The specific extensive quantities satisfy the balance eq
tions

r
]gi
]t

1“•Ji5s i , ~2!

whereJi(r ,t) is the conductive current density,r is the mass
density, and“ means the nabla operator. There are two k
of constitutive equations

]gi
]t

5Sik
21 ]Gk

]t
~3!

and

Ji5Lik“Gk , ~4!

whereG i(r ,t) is an intensive quantity, e.g., 1/T,p/T. If we
substitute Eqs.~3! and~4! into the balance equations~2!, we
get the field equations~transport equations!

rSik
21 ]Gk

]t
1“•~Lik“Gk!5s i , ~5!
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which are the equations of motion.Sik
21 ,Lik are the phenom-

enological coefficient matrices, and these are supposed t
symmetric:

Sik
215Ski

21 , ~6!

Lik5Lki . ~7!

Sik
21 is the matrix of generalized specific capacities, which
negative definite and related to the existence and stabilit
the local equilibrium@8,16,17#. The second equation is calle
Onsager’s reciprocity relation@3,18,19# in field theory. This
relation ranks among one of the most important statement
irreversible thermodynamics. There are numerous artic
@18–47# that deal with the proof, generalization, and exte
sion of it. They use statistical or/and phenomenologi
methods and different assumptions for the examinations
the relation. Since Miller’s experimental results@48,49# most
scientists have accepted the relation and taken advantag
it in various special cases. Onsager relations are of hel
solving the set of differential equations because these red
the number of independent quantities. Here we mention
fluxes and thermodynamical forces of different tensor
character do not couple~Curie’s theorem!, i.e., the number of
independent quantities is decreased in this way too. This
sults from the invariance of the phenomenological equati
~constitutive equations! under special orthogonal transform
tions.

Nonequilibrium thermodynamics is mainly restricted
the study of linear phenomena and the balance equation
the entropy plays a central role. The local mathematical
pression for the second law of thermodynamics is

s5Ji•“G i5Ji•X i>0, ~8!
5581 © 1997 The American Physical Society
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wheres is the entropy production density.

II. THE MATHEMATICAL MODEL

In this section we give a canonical mathematical mo
for those kind of irreversible transport processes that can
described by source-free and convection-free transport e
tions with constant coefficients. This model is based on th
postulates

Postulate I. Hamilton’s principle is

dS5E
t1

t2E
V
L dV dt50, ~9!

whereL is the Lagrange density function, which is genera
a function of time and space, and the function of the first-
higher-order derivatives of the field quantities with respec
time and space.

Postulate II. The Lagrange density function of the sourc
free and convection-free nonequilibrium systems is

L~w i ,w i ;t ,Dw i !5
1

2
~%Sji

21w j ;t2L jiDw j !
2, ~10!

where thew i are four times differentiable field quantitie
~potentials! @50,51# andD5¹2. These give the measurab
quantitiesG i(r ,t) as

G i5%Sji
21 ]w j

]t
2L jiDw j . ~11!

Sji
21 ,L ji are constant coefficients,r is the mass density, an

D is the Laplace operator.
Postulate III. The entropy density functions is the qua-

dratic form of the generalized canonical momentum den
functions

s5
1

2
r21piSi j pj , ~12!

wherepi is defined by

pi5
]L

]w i ;t
. ~13!

From the first two postulates we obtain the Euler-Lagran
equations

]L

]w i
2

]

]t

]L

]w i ;t
1D

]L

]Dw i
50. ~14!

These are the equations of motion or field equations
w i , which are equivalent to

%Sik
21Gk;t1LikDGk50. ~15!

These are the source-free and convection-free transport e
tions.

The total variation of the functional

S5E
T
L~w i ,w i ;m ,w i ;mn!d4x ~16!
l
e
a-
e

r
o

-

y

e

r

ua-

over the domainT is

d tS5E
T8
L~w i1dw i ,w i ;m1dw i ;m ,w imn1dw i ;mn!

2E
T
L~w i ,w i ;m ,w i ;mn!

5E
T

]

]xm
~Qmjdxj1P imd tw i1l imnd tw i ;n!d4x,

~17!

where m,j51,2,3,4; x15x; x25y; x35z; and x45t.
P im and l imn are the canonical coefficients. The canonic
momentum densitypi of the field is

pi5P imNm5
]L

]w i ;t
5rSi j

21G j , ~18!

where the normal vector can be writtenNm5(0,0,0,1). The
thermodynamic tensorQmj is the canonical tensor of th
field. 2Q44 yields the Hamilton density function@51,52# if
we take and define the canonical momentum density func
~18! by the formula

2Q445H~pi ,Dw i !5w i ;t

]L

]w i ;t
2L

5
1

2
~r21Si j pj !

21r21Si j pjLkiDwk . ~19!

In general, if we have a Hamiltonian density functio
H(w i ,w i ;m ,w i ;mn ,pi) ~wherem,n51,2,3), the differential of
H leads to

dH5
]H

]w i
dw i1

]H

]w i ;m
dw i ;m1

]H

]w i ;mn
dw i ;mn1

]H

]pi
dpi .

~20!

With the use of the definition ofH

2Q445H~w i ,w i ;m ,w i ;mn ,pi !5w i ;t

]L

]w i ;t
2L, ~21!

we obtaindH in the form

dH52
]L

]w i
dw i2

]L

]w i ;m
dw i ;m2

]L

]w i ;mn
dw i ;mn1w i ;tdpi .

~22!

When Eqs.~13! and ~14! are taken into account, a compar
son of Eqs.~20! and ~22! yields

]H

]w i
52

]L

]w i
, ~23!

]H

]w i ;m
52

]L

]w i ;m
, ~24!

]H

]w i ;mn
52

]L

]w i ;mn
, ~25!
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]H

]pi
5w i ;t . ~26!

Equation~26! is the first group of canonical equations. Wi
the help of Eqs.~23!–~25! we obtain the second group o
canonical equations if we take the derivatives of canon
momentum densitiespi with respect tot and use the Euler
Lagrange equations

pi ;t5
]

]t

]L

]w i ;t
5

]L

]w i
2

]

]xm

]L

]w i ;m
1

]2

]xm]xn

]L

]w i ;mn
,

~27!

pi ;t52
]H

]w i
1

]

]xm

]H

]w i ;m
2

]2

]xm]xn

]H

]w i ;mn
. ~28!

In our case, when the Hamilton density function
H(pi ,Dw i), we obtain for the second canonical equation

pi ;t52D
]H

]Dw i
. ~29!

It is very useful to introduce the Poisson bracket in a gen
form because the time derivative of a physical quantity c
be given by a Poisson bracket of the Hamilton density fu
tion and the quantity itself

@pi ,H#5
dpi
dw j

dH

dpj
2

dH

dw j

dpi
dpj

, ~30!

where the functional derivatives mean, e.g., the Hamilton
density functionH with respect tow i ,

dH

dw i
5

]H

]w i
2

]

]xm

]H

]w i ;m
1

]2

]xm]xn

]H

]w i ;mn
. ~31!

The Poisson bracket expressions of the canonical equa
hold

w i ;t5@w i ,H#, ~32!

pi ;t5@pi ,H#. ~33!

Since this Hamiltonian density pertains to purely dissipat
convection-free transport processes without heat sources
chemical reactions, we expect to get the well-known bilin
form of the entropy production density in the formalism.

Let us derive the balance equations of the entropy den
If we calculate the Poisson bracket of specific entropy d
sity s ~postulate III! and the Hamiltonian density functio
H @Eq. ~19!#, we get the time evolution of entropy densi
s

]s

]t
5@s,H#. ~34!

We calculate this Poisson bracket expression
l

al
n
-

n

ns

e
nd
r

y.
-

@s,H#5S ds~pi !

dw j

dH

dpj
2

dH

dw j

ds~pi !

dpj
D

52r21Si j pjLigDr21Sgkpk

52“•@r21Si j pjLig•“~r21Sgkpk!#

1“~r21Si j pj !Lig•“~r21Sgkpk!

52r22Si j LigSgk“•~pj“pk!

1r22Si j LigSgk“pj•“pk . ~35!

Thus we obtain the entropy balance equation

]s

]t
1r22Si j LigSgk“•~pj“pk!5r22Si j LigSgk“pj•“pk ,

~36!

where

Js5r22Si j LigSgkpj“pk ~37!

is the entropy current density and

s5r22Si j LigSgk“pj•“pk5r21Si j“pj•Ligr
21Sgk“pk

~38!

is the entropy production density. This can be simply writt
@taking into account Eqs.~4!, ~8!, and~18!#

s5X i•Ji . ~39!

On the basis of Eq.~39! we can express the entropy produ
tion density with the potentialsw i ,

s~w!5“~rSji
21w j ;t2L jiDw j !•Lik“

3~rSmk
21wm;t2LmkDwm!

5rSji
21LikSmk

21
“w j ;t•“wm;t

2L ji LikrSmk
21
“Dw j•“wm;t

2rSji
21LikLmk“w j ;t•“Dwm1L ji LikLmk“Dw j

•“Dwm . ~40!

III. LIE ALGEBRA

w1(r ,t),w2(r ,t), . . . ,wK(r ,t) are scalar-vector functions
which are four times differentiable and linearly independe
Let us consider a linear vector spacefK over the field of real
numbers; the basis vectors arew1 ,w2 , . . . ,wK . Any vector
j can be expanded in terms of the basis$w i%. If we introduce
multiplication among the elements offK , which means the
multiplication of scalar-vector functions, then we obtain
linear associative and commutative algebraAK .

If we have an arbitrary associative algebra, a Lie alge
can be constructed from it if we introduce a different mul
plication

a(b5~ab2ba!. ~41!

Thus we obtain a Lie algebraL(A) from an associative al-
gebraA on the same field.
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Let us consider the following infinitesimal, linear, an
biective transformation, which transforms the basis vect
w i into the basis vectorsw i8 :

w i°w i85d i lw l2QTil P̂w l , ~42!

where the transformationT̂:fK→fK8 is an isomorphism, and
fK8 is the different vector field. The inverse of transformati

T̂ is

T̂21:fK8→fK , ~43!

w j5d j lw l81QTjl P̂w l8 . ~44!

We emphasize thatT̂ and T̂21 are infinitesimal linear trans
formations, i.e., the second-order terms are negligible.
d i l is the Kronecker symbol,Q is an infinitesimal constant
Til is the mixing matrix in which the elementsTii50, and
P̂ is the ordering operator. The operatorP̂ orders the indices
of w. There are three different cases:~I! P̂511, in the case
of w i1

w i2
the orderingi 1i 2 is even, i.e., the number of inver

sions is 0, soi 1. i 2; ~II ! P̂50, if there is no ordering, i.e.
i 15 i 2; ~III ! P̂521, if the ordering i 1i 2 is odd, i.e., the
number of inversions is 1,i 2. i 1. The effect of operatorP̂ in
the last case is thatP̂ makes the ordering (i 1i 2→ i 2i 1)
inversion-free. Moreover, the operatorP̂ commutates with
all other operators because this acts only on the orderin

We consider that case whenK53 and we take the prod
ucts

w28w385~w22QT21P̂w12QT23P̂w3!

3~w32QT31P̂w12QT32P̂w2!

5w2w32QT21P̂w1w32QT23P̂w3w3

2w2QT31P̂w12w2QT32P̂w2

5w2w32QT21w1w31QT31w1w2 ~45!

and

w38w285w3w22QT31w1w21QT21w1w3 . ~46!

We can calculate the difference of these products

w28w382w38w2852Q~T31w1w22T21w1w3!, ~47!

from which we can see that it is useful to introduce a
define a different algebraic product among the element
fK8

w j8(wk85w j8wk82wk8w j852Q~Tklw lw j2Tjmwmwk!,
~48!

wherel ,mÞ j ,k. In this way, it is easy to prove

w j8(wk852wk8(w j8 . ~49!
rs

e

of

We can conclude thatT̂(fK)5fK8 linear vector space with
the above-defined algebraic multiplication is a Lie algeb
@53,54#.

IV. T̂ AS A DYNAMICAL TRANSFORMATION

If the equations of motion are invariant with respect to~i!
the transformations ofr ,t, we speak about geometrical tran
formations and geometrical symmetry, and~ii ! the transfor-
mations of field quantitiesw(r ,t), we speak about dynamica
transformations and dynamical symmetry. Since we have
duced the equations of motion from the variation of acti
S ~Hamilton’s principle!, the sufficient condition for the
equations of motion is the invariance of the action. If t
action is invariant with respect to dynamical transformatio
it means mathematically that@55–58#

L„w i~r ,t !,w i ;m~r ,t !,w i ;mn~r ,t !…

5L„w i8~r ,t !,w i ;m8 ~r ,t !,w i ;mn8 ~r ,t !…, ~50!

i.e., it is sufficient to examine the invariance of Lagrangia
Our aim is to discuss how the Lagrangian~10! behaves
against the transformationT̂. We can point out after a long
but elementary calculation@43# that the Lagrangian is invari
ant with respect toT̂, so this dynamical transformation pe
tains to the dynamical invariance of equations of motion
nonequilibrium thermodynamics.

Given this knowledge, the question arises how the s
cific entropy densitys and the specific entropy productio
density s behave under this dynamical transformationT̂.
First we write the entropy densitys with the potential func-
tionsw i ,

s5
1

2
r21@rSik

21~rSfkw f ;t2L fkDw f !Si jrSjl
21

3~rSglwg;t2LglDwg!#

5
1

2
r3Sik

21Sfkw f ;tSi j Sjl
21Sglwg;t

2
1

2
r2Sik

21L fkDw fSi j Sjl
21Sglwg;t

2
1

2
r2Sik

21Sfkw f ;tSi j Sjl
21LglDwg

1
1

2
rSik

21L fkDw fSi j Sjl
21LglDwg . ~51!

Now we transform the potential functions and get the tra
formed entropy densitys8. We show the transformation fo
the first term ofs, which is underlined in Eq.~51!, and we
can sign@s#1. The transformed of this term is signed@s8#1,
which is the first term of the transformed entropy dens
s8(w),
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@s8#15
1

2
r3Sik

21Sfkw f ;t8 Si jSjl
21Sglwg;t8

5
1

2
r3Sik

21SfkSi j Sjl
21Sgl~d fmwm;t2QTfmP̂wm;t!

3~dgpwp;t2QTgpP̂wp;t!

5
1

2
r3Sik

21SfkSi j Sjl
21Sgl~w f ;twg;t2QTfmP̂wm;twg;t

2w f ;tQTgpP̂wp;t!5
1

2
r3Sik

21SfkSi j Sjl
21Sglw f ;twg;t

2
1

2
r3Sik

21SfkSi j Sjl
21SglQTfmP̂wm;twg;t

2
1

2
r3Sik

21SfkSi j Sjl
21Sglw f ;tQTgpP̂wp;t . ~52!

We neglected the second-order terms and now change
indicesm→p, f→g, g→ f , i→ j , j→ i , l→k, andk→ l
in those terms which containm, underlined in Eq.~52!; we
obtain the result

@s8#15
1

2
r3Sik

21SfkSi j Sjl
21Sglw f ;twg;t

2
1

2
r3Sjl

21SglSjiSik
21SfkQTgpwp;tw f ;t

1
1

2
r3Sik

21SfkSi j Sjl
21SglQTgpwp;tw f ;t . ~53!

We recognize, comparing the second and third terms of
~53!, that @s#15@s8#1 if and only if
es

l.

-

le

f

lid

is-

cs
he

q.

Si j5Sji , ~54!

i.e., the entropy density is invariant if and only if the matr
Si j is symmetric. We can examine the invariance property
entropy production density in the same way@43,51# and we
get

s~w!5s~w8!. ~55!

This equality is true if and only if the Onsager reciproci
relations hold

Lik5Lki . ~56!

Consequently, if we demand the invariance of entropy d
sity function and the entropy production density under
introduced transformation, which is a dynamical transform
tion since it leaves the Lagrangian invariably, the pheno
enological coefficient matrices are symmetric in linear cas

V. CONCLUSION

The canonical model developed allows us to exploit
possibilities of the invariance principles. We have shown t
the descriptions of the dissipative processes in the linear
tor space generalized byw i and in the Lie algebra genera
ized byw i8 are equivalent if the phenomenological coefficie
matrices are symmetric. This is in line with our expectati
from a suitable model, i.e., our canonical model can prov
the existence of the reciprocity relations in the framework
the model.
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